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A model of a liquid medium with couple stresses, which generalizes the theory of a viscous micropolar liquid to the same degree 
with which the constitutive relations of a simple viscoelastic liquid generalize the equations of a state of a Newtonian liquid, is 
proposed. The similarity and distinction between the model of an elastic micropolar liquid and the model of a medium equipped 
with a director field and used to describe nematic liquid crystals is discussed. Problems of the equilibrium of a micropolar liquid, 
including the problem with a free surface are considered. The equilibrium conditions of the phases of an elastic micropolar liquid 
are derived by a variational method. Problems of the flow of a viscoelastic liquid are derived by a variational method. Problems 
of the flow of a viscoelastic liquid in a circular tube and between rotating coaxial cylinders are solved. The results obtained may 
be useful in the mechanics of suspensions, magnetic and biological liquids, liquid crystals and other liquid media of complex 
structure. © 2000 Elsevier Science Ltd. All rights reserved. 

The theory proposed below is based on constitutive relations of the Cosserat continuum with a memory, 
i.e. an elastic medium with couple stresses, each particle of which has the degrees of freedom of an 
absolutely rigid body. The mechanics of elastic media with couple stresses is described in [1-9], and 
the constitutive relations of viscoelastic couple-stress solids can be found in [10-12]. Models of liquid 
media with microrotations and couple-stresses, which are called micropolar liquids, trace their origin 
from [13, 14]. An extensive review of the literature on the mechanics of micropolar liquids can be found 
in [15]. Applications of the theory of couple-stress liquids in microfiltering and capillary flaw detection 
are given there. The application of asymmetrical hydrodynamics to problems of tribology are described 
in [16]. 

A feature of all the models of micropolar liquids, described in [13--1@ is the fact that at rest they 
do not differ from simple (isotropic) liquids, since the static couple stresses in them are equal to zero, 
while the static tensor of the force stresses is spherical. The theory given below includes the models 
described in [13-16] as special cases and differs essentially from these models in that, in the equilibrium 
state, a micropolar liquid, like a liquid crystal, possesses orientational elasticity and is capable of 
maintaining both the moment stresses and shear force stresses (see below, Section 2). The model of a 
viscoelastic micropolar liquid considered here is the most general model of an oriented liquid medium, 
the orientation of the particles of which is characterized by an orthonormalised triple of direction vectors. 
In the general case, a viscoelastic micropolar liquid can possess various memory properties with respect 
to the variable actual configuration. 

1. C O N S T I T U T I V E  RELATIONS OF A M I C R O P O L A R  L I Q U I D  
WITH A MEMORY 

We will consider the Cosserat continuum model [1-9], according to which each particle of the medium 
can be represented as an absolutely rigid body. Its position in space at the instant of time t is given by 
the radius vector R(t), while the orientation is determined by the triple of orthonormalized vectors Dk(t) 
(k = 1, 2, 3). In addition to the actual state we will also consider a certain initial state of the medium, 
in which the position and orientation of a particle are specified by a vector r and an orthonormalized 
trihedron d~ (k = 1, 2, 3). The triples of vectors Dk and d~ generate a strictly orthogonal tensor H = 
d~ Q D~, which is called the microrotation tensor [7-9]. 

The equations of motion of a Cosserat medium, which express the balance of momentum and angular 
momentum for an arbitrary particle of the body, have the form [1-9] 

dv d~o 
DivT+pm = P-d~-' DivM+T× +pvL = ~ldt (1.1) 
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Here T and M are the stresses and couple-stress tensors of the Cauehy type, Div is the divergence 
operator in Euler coordinates, p is the density of the medium, m and Ix are the vectors of  the mass 
force and mass moment, ~, is the scalar measure of rotational inertia of the particles of the continuum, 
v is the velocity vector, to is the vector of the angular velocity of rotation of the trihedron, Dk: 
dDk/dt = to × Dk, d/dt is the material derivative with respect to time, and the symbol T× denotes the 
vector invariant of the second-rank tensor T, defined by the relation 

T x = (TmnRm ® R . )  x = TmnRm × R n 

Here Rk is a certain vector basis. 
Using the principle of local action [17], the constitutive relations of the Cosserat continuum with a 

memory in the case of  finite deformations must be taken in the form 

T(t) = A l [ct  (s), l'It(s), grad I-I t (s)] 

M(t) = A 2 [C t (s), H t (s), grad H t (s)] (1.2) 

Ct(s) = C(t- s), Hi(s) = H(t- s), C(t) = gradR(t) (s ~> 0) 

In (1.2)A1 andAz are response operators, which depend on the prehistory of  the deformation gradient 
C(s )  of the microrotation tensor Hi(s) and its gradient, and grad is the gradient operator in the initial 
state, i.e. in the reference configuration. 

The requirement of  invariance of constitutive relations (1.2) with respect to translations of the frame 
of reference of the observer is satisfied automatically, while the requirement of invariance with respect 
to translations of the frame of reference of the observer is satisfied automatically, while the requirement 
of invariance with respect to rotations will be satisfied if and only if the operatorsAa andA2 satisfy the 
condition 

A~x[Ct (s) • Qt (s),Ht (s). Qt(s), gradHt(s)-Qt(s)] = 

= Qr( t ) .  A~t[Ct(s), Ht(s), grad Hi(s)] • Q(t) (~ = 1, 2) (1.3) 

for any strictly orthogonal tensor Q(t)(s). Putting Qt(s) = HiT(s) in (1.3) we obtain 

T(t) = H r (t). B l [U t (s), L t (s)]- H(t) 

M(t) = H r (t). B 2 [U t (s), L t (s)]. H(t) (1.4) 

Here Ut(s) is the prehistory of the first measure of deformation and Lt(s) is the prehistory of the flexural 
deformation tensor. These tensors are defined by the formulae [7-9] 

U = C . H  r, L × E  = - (g r adH) .H  r (1.5) 

where E is the unit tensor. 
It can be seen that representations (1.4) are not only necessary but also sufficient for material 

independence of the frame of reference. 
In addition to the tensors U and L we will also introduce a second measure of deformation u and a 

measure of flexural deformation K 

u=C-l -H, K=C-B'Hr =L+b (1.6) 

In (1.6) we have denoted by b and B the microstructure curvature tensors in the reference and actual 
configurations, respectively 

b = - ~ ( g r a d d k ) x  dk, B = - ~ ( G r a d D k ) x D  ~ (1.7) 

where Grad is the gradient operator in Euler coordinates. 
Note that the quantities b, B, K, L and M are not true, but second-rank axial tensors (pseudotensors). 

This must be taken into account when formulating the properties of isotropy of the tensor functions 
or operators in which these tensors participate [6]. 

The operators B1 and B 2 in constitutive relations (1.4), generally speaking, depend on certain 
constant tensors (i.e. which do not change during deformation), defined by the choice of reference 
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configuration of the material body. The tensor of the curvature of the initial state b, in particular, is such 
a tensor. Hence, taking (1.6) into account, constitutive relations (1.4) can be represented in the form 

T(t) =Hr(t).  D I [U'(s), Kt(s)] • H(t) 

M(t) =l-It(t) • 02 [Ut(s), K'(s)]. H(/) (1.8) 

In the case of an elastic material the tensors T and M are independent of the deformation prehistory, 
and constitutive relations (1.8) take the form 

T(t) =Hr(0 "fl [U(0, K(0]- H(t) (1.9) 

M(t) =W(t) "f2 [U(t), K(0] .  H(t) 

where fl  and f2 are tensor functions. Using the laws of thermodynamics the equations of state (1.9) 
of the Cosserat elastic continuum can be represented using the specific deformation potential energy 
W0(U, K), which is identical with the specific free energy in an isothermal process and the specific internal 
energy in an adiabatic process, as follows [9]: 

T = pC r .  (~W/~U) • H, W = P01W0 (1.10) 

M = pC r .  (3W/OK) • H 

Here W is the mass deformation potential energy density and P0 is the density of the material in the 
reference configuration. 

Henceforth we will consider a class of isotropic materials, for which the tensor response operators 
D1 and D2 in (1.8) are isotropic, i.e. they satisfy the relations (~ = det Q) 

O t [ Q .  Ut(s). Qr, rl Q " Kt(s). Qr] = Q .  Ol[Ut(s), Kt(s)]. Qr (1.11) 

rlD2[Q - U'(s) • Qr, r lQ-  K'(s) • Qr] = Q .  O2[Ut(s), K'(s)] • Qr 

for any orthogonal tensor Q. According to (1.5), (1.8) and (1.11) the tensors T(t) and M(t) are not 
changed when the following replacements are made 

Ct(s) ---> Q-  C'(s), H'(s) --> Q .  H'(s), V Q = Q-r (1.12) 

This means that isotropic materials are insensitive to any changes in the reference configuration, 
described by orthogonal transformations. 

In the mechanics of simple materials with a memory, the idea of the relative deformation gradient 
Ct(x) = C-l(t) • C(x) is used [17, 18], when determining which the actual configuration is considered as 
the reference configuration, and the configuration corresponding to the instant of time x, plays the role 
of the actual configuration. In a similar way we introduce the idea of the relative microrotation 

H,(x) = Dk(t ) Q Dk(x ) = Hr(t) • H(x) (1.13) 

and also the relative measures of deformation 

Ut(x) = Ct(x) • Htr(x), Kt('~) = Lt(x) + B(t) 

L t (x) x E = -[Grad H t (x)]. Htr (x) 

The prehistories of tensors (1.13) and (1.14) are denoted as follows: 

C, (t - s) - err(s), Ht( t  - s) =- Htt(s) etc. 

The following formulae are obtained from (1.13) and (1.14) 

u ' ( s )  = u ( t ) .  H( t ) -U' , ( s ) .  H r ( t )  

Kt(s) = U(t). H(t). Kit (s) - HT(t) 

Utt(0)=E, Kt t (o )=g( t ) ,  Lit(0)=0 

K',(s) = L't(s ) + g(t) 

(1.14) 

(1.15) 

(1.16) 
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Theorem 1. Constitutive relations of any isotropic Cosserat medium with a memory can be represented 
in the form 

T(t) = Fl[u(t),Utt(s),K~(s)], M(t)= Fz[u(t),U~(s),Ktt(s)] (1.17) 

where F1 and F2 are isotropic operators. 

Proof. On the basis of (1.15) constitutive relation (1.8) for the stress tensor can be represented in 
the form 

T(t) = Hr(t)  • GI[U(t),H(t ) . U~(s). Hr(t), H(/). K~(s). Hr(t)] • H(t) (1.18) 

We put Q = Hr(t) in (1.12). Then the tensor U(t), by (1.6), is replaced by a tensor u-l(t), while the 
tensor H(t) is replaced by the unit tensor E, which, on the basis of (1.18), gives 

T(t) = G 1 [u-I (t), Utl (s), K~ (s)] 

The constitutive relation for the couple-stress tensor M(t) is converted in a similar way and leads to 
expressions (1.17). The isotropic nature of the operators F 1 and F2 follows from the property of isotropy 
of the operators D1 and D2. 

A Cosserat medium with a memory which is insensitive to any changes in the reference configuration, 
and which preserves the density of the medium, will be called a viscoelastic micropolar liquid. It is obvious 
that the liquid belongs to the class of isotropic materials. Since the tensors U't(s) and Kit(s) in (1.17) 
are independent of the choice of the reference configuration, an isotropic medium will be a liquid if 
and only if the dependence on the tensor u(t) in the constitutive relations reduces to a dependence on 
det u(t) or, which is equivalent, to a dependence on the density p(t). Hence the following theorem 
holds. 

Theorem 2. The general representation of the constitutive equations of a viscoelastic micropolar liquid 
has the form 

T(t) = H l [p(t), B(t), U~ (s), Lit (s)] (1.19) 

M(t) = H 2 [p(t), B(t), U~ (s), Ltt (s)] 

where HI and He are isotropic operators. 
Relation (1.16) has been taken into account in (1.19). 
Theorem 2 is an extension of Noll's theorem [17] to simple liquids in the case of a micropolar 

liquid. 
For a liquid at rest we have Ltt(s) = 0, Utt(s) = E, and constitutive relations (1.19) take the form of 

the equations of state of an elastic micropolar liquid 

T = q~(p, B), M = ~(p, B) (1.20) 

where tp and V are isotropic tensor functions. 

The model of an elastic micropolar liquid can be obtained in a different way, namely, as a special case of 
an elastic isotropic Cosserat medium, for which the functions fl and f2 in (1.9) are isotropic. Assuming Q = H r in 
the isotropicity condition, we obtain from (1.9) a representation of the equations of state of an isotropic elastic 
material 

T =fl(u -1, u -1 • B) = ~u,  B) (1.21) 

M =f2(u -1, u -i • B) = V(u, B) 

In relations (1.21) only the first tensor argument of the isotropic functions tp and v/depends on the choice of 
the reference configuration. The property of insensitivity of the material to any changes in the reference configura- 
tion, with the condition that the volume is preserved, will be satisfied if and only if the dependence on u in (1.21) 
reduces to a dependence on det u. This leads to constitutive relations (1.20). 

Relations (1.19) contain a model of a micropolar liquid of the differential type. As we know [8], the 
rates of deformation and flexural deformation tensors are defined by the formulae 



The theory of elastic and viscoelastic micropolar liquids 759 

c - -C- '  . ( d  U ) - H  = Grad v + E x co (1.22) 

U ~  C -I . ( d K ) - H  = Gradm 

We will introduce indifferent rate tensors of higher order by the recursion relations 

= d An + (Grad v). A n + A n x m, A 0 = E, A 1 = e An+l 

=dBn+(Gradv).Bn+Bnxo~, B 0=B,  B l = ×  Bn+l 

Taking into account the formal expansions 

U't(s) = ~. (-1)n s"A.(t), Lit(s)= ~. (-1)n snB.(t) (1.23) 
n=0 n! n=l tl! 

we will call a micropolar liquid with the equations of state 

T =Z(P, B, AI ... A,,, Bt ... B,,) (1.24) 
M =f2(P,  B, A t ... An,, B 1 ... B,,) 

(fm andf2 are isotropic functions), a differential-type liquid of (m, n) complexity. 
A special case of (1.24) is a model of a viscous micropolar liquid [13, 14], the equations of state of 

which have the form 

T =fl(P, ~), M =fz(P, x) 

2. THE E Q U A T I O N S  OF AN E L A S T I C  M I C R O P O L A R  L I Q U I D  

For an elastic liquid in an isothermal process, the mass free energy density W is an isotropic function 
of the curvature tensor B and the density p. Taking into account the relation 

d B  = u - - ~ - B + m x B - B x m  (12.1) 
dt 

which follows from (1.7) and (1.22), we calculate the rate of change of the function Win a fixed particle 
of the medium 

dt ~ "  ' + o3p-~ ' -  "~-  "ur - t r  +p  E .e r + (2.2) 

 W'Br)× 0'] + tr[(B r ~)W3B 

On the other hand, from (1.10) and (1.22) we have 

dW = p-I tr(T-e r + M .~r) 
dt 

(2.3) 

Comparing (2.2) and (2.3) and taking into account the fact that the tensors t ,  ~ for the motion of 
the medium can take arbitrary values, we obtain 

~W 
M = p - ~ - ,  T = - p E - M . B  r, p=p23W (2.4) 

39 

The following relation is obtained from the fact that the vector oJ is arbitrary and using 
(2.2)-(2.4) 
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(M. Br)x = (B r .  M) x (2.5) 

It can be shown that the equations of state (2.4) of an elastic liquid hold for any thermodynamic 
processes, where the free energy W must also be assumed to depend on the temperature. 

The model of an elastic micropolar liquid is similar to the model of a nematic liquid crystal [19-23], 
but differs from it in the fact that the orientation of the particles of the micropolar liquid is specified 
by an orthonormalized triple of vectors, whereas in the continuum theory of nematic liquid crystals the 
orientation is characterized by a single unit vector--the director n. The free energy W in the theory of 
nematic liquid crystals is an isotropic function of two arguments [19-21]: the vector n and the tensor 
Grad n, whereas in a micropolar liquid Wdepends on one tensor argument B. Of course, in both cases, 
there are also scalar arguments: the density and the temperature. 

Note that the property of isotropicity of the function W(p, B) does not mean that the elastic micropolar 
liquid is an isotropic liquid. The last term is equivalent to the notion of a simple elastic liquid and corres- 
ponds to the case when W = Wp). In just the same way the property of isotropicity of the free-energy 
function of nematic liquid crystal W(p, n, Grad n) does not prevent us calling it an isotropic liquid [24]. 

The equations of state of an elastic micropolar liquid (2.4) can be used to model the behaviour of 
complex microstructural liquids, similar to liquid crystals. The anisotropy of the properties and the 
orientational elasticity of nematic liquid crystals can be explained by the considerable preferential 
orientation of the elongated molecules or the complexes generated by them, where the microstructure 
of the liquid crystal can be represented by floating long rods or filaments. By analogy with this 
representation we can regard the microstructure of the elastic micropolar liquid (2.4) as formed by an 
ordered set of floating ellipsoids with different semiaxes. 

The complete system of equations of motion of elastic micropolar liquids in Euler coordinates contains, 
as the unknown functions, the density p, the velocity field v, the angular velocity field to, and the tensor 
curvature field B, and according to (1.1), (1.22) and (2.4) has the form 

/ ~v ) 
- Grad p - Div(M. B r) + pm = p ~ -  + v. Grad v 

(~t° + v. Grad to) D i v M - ( M ' B r ) x  +PlJ '=7 bt 

o~a 
+ v. Grad B = Grad to - (Grad v). B - B x to (2.6) & 

- ~ +  Div(pv) = 0 

The quantities p and M are assumed to be expressible in terms of p and B using the equations of 
state (2.4). The rotational inertia 7, generally speaking, can be specified by a function of the density p. 
In the case of an incompressible liquid p = const, and the pressure p cannot be expressed in terms of 
p and B and is an unknown function of the coordinates and time. 

In the problem of a liquid at rest v = to = 0, and Eqs (2.6) become the equilibrium equations. The 
following identity follows from the homogeneity of the liquid and relations (2.4) and (2.5) 

Grad(W + p-lp) = p-i [Grad p + Div(M • B r)] - p-I [Div M - (M. B at)× ]- B r (2.7) 

When p, = 0, i.e. when there are no external mass moments, the force equilibrium equation, according 
to (2.6) and (2.7), reduces to the form 

Grad(W+ p ~---~) = m (2.8) 

and will be solvable in the case of potential mass forces m. For an incompressible liquid the expression 
in parenthesis in (2.8) must be replaced by W + p-lp. Hence, the determination of the equilibrium state 
of an elastic micropolar liquid reduces to determining the orthonormalized triple of vectors Dk from 
the equations 

3W 
D i v M - ( M . B r ) × = 0 ,  M = p - ~ - ,  B = - ~ ( G r a d D k ) x D  k (2.9) 
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and then finding the density or pressure using (2.8). 
Since, by (2.4), the Cauchy stress tensor in an elastic liquid is not spherical, a micropolar liquid at 

rest is capable of withstanding shear force stresses and also couple stresses. 
When considering the problem of the equilibrium of a micropolar liquid, it is necessary to add 

boundary conditions on the boundary Y. of the volume V, occupied by the liquid, to Eqs (2.9). These 
conditions consist in specifying the trihedron l)k or the vector of the couple-stress load: N • M = 1, 
where N is the unit normal to the boundary. It can be verified that this boundary-value problem, in the 
case of an incompressible liquid, can be formulated in the form of a variational principle 

5SS~ pWdV-I I l - , d E = 0  (2.10) 
v r- 2 

@[~: =0, £=Y-IUY-2, @=-1~SDkxD t 

Here Y'I is part of the surface £ on which the trihedron Dk is specified, E2 is the part of the surface on 
which the couple-stress load is specified and ~g is the virtual orientation vector, in terms of which the 
variation of the curvature tensor is expressed 

8B =GradO-  B x ~ (2.11) 

We can eliminate the vectors Dk from the system of equations (2.9) by replacing the last relation in 
(2.9) by the equation of compatibility with respect to the tensor B (Rot is the curl operator in Euler 
coordinates) 

(Rot  B)  r = B 2 - (tr B ) B  + ~ (tr 2 B - tr B 2)E (2.12) 

Using the Hamilton--Cayley formula for the non-singular tensor B, Eq. (2.12) can be written differently 

(RotB) r = BqdetB (2.13) 

In the simply connected region, the triple of orthonormalized vectors I) k is determined from the 
specified smooth tensor field B, which satisfies compatibility condition (2.12), uniquely, if the trihedron 
Dk is specified at a certain point of the region. 

Since the curvature of the microstructure B is a pseudotensor of the second rank, the free energy W 
is an even function of B: W(p -B) = W(p, B). The simplest example of an even function is the quadratic 
form, the general representation of which, taking into account the isotropicity of the function W(B), 
in the case of an incompressible medium has the form 

pW = ~ [ ~ t r  2 B +  ~ t r ( B . B r ) +  v t r  B 2] (2 .14)  

where ~., ~t and v are constants. 
It can be shown that the necessary and sufficient conditions for the form (2.14) to be positive definite 

is the satisfaction of the inequalities 

3Z,+lX+V>0, ~ t+v>0,  I.t>0 (2.15) 

According to (2.4) the following linear dependence of the couple-stress tensor on the curvature of 
the structure corresponds to expression (2.14) 

M = ~ E t r B  + I.tB + v B  r (2 .16 )  

As in the non-linear theory of elasticity [17] it is convenient to formulate additional limitations on 
the form of the relationship W(B) in addition to it being positive definite. In particular, this 
condition can be the condition for strong ellipticity of the equilibrium equations. It can be shown that 
the condition of strong ellipticity of the couple-stress equilibrium equation (2.9) is equivalent to the 
inequality 

d 2 
dx 2 W(B + xe ® d)[~= o > 0 (2.17) 

for any non-zero vectors c and d. 
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For the equation of state (2.14), condition (2.17) is satisfied if and only if 

~t>0, ~ t + v + Z , > 0  

As in the case of the linear theory of elasticity, the last inequalities follow from the conditions for (2.15) 
to be positive definite. Nevertheless, for equations of state of general form, condition (2.17) does not 
follow from the fact that the function W(B) is positive. 

3. SOME P R O B L E M S  ON THE E Q U I L I B R I U M  OF E L A S T I C  L I Q U I D S  

We will henceforth confine ourselves to finding the equilibrium solutions in the case of homogeneous 
incompressible liquid when there are no volume moments. 

A twisted structure. Consider the following field of director vectors 

D1 = elcostx(Z3 + e2sintx(Z) 

D2 = -elsintx(Z) + e2costx(Z), D 3 = e3 

(3.1) 

Here and henceforth el, e2 and e 3 are an orthonormalized Cartesian basis, and X, Y and Z are Cartesian 
coordinates. 

The curvature tensor B, corresponding to (3.1), is defined by the relation B = tx'(Z)e 3 @ e 3. It follows 
from the property of isotropicity of the function M(B) that (M • Br)× = 0 for arbitrary constitutive 
relations. Assuming that ~" = const, the tensor M is constant and Eq. (2.9) is satisfied identically. Hence, 
the structure of (3.1) when cx(Z) = aZ + b is a universal solution which is independent of the choice 
of the equations of state. 

The plane problem. In this case the orientation of the particles of the micropolar liquid is defined by 
a single parameter-- the angle of rotation t~(X, Y) of the trihedron Dk around a certain axis. To fix our 
ideas we will assume that the axis coincides with the direction of D 3. Then the trihedron Dk is defined 
by the following equations 

DI = elcosct(X, Y) + e2sintx(X, Y) (3.2) 

D2 = -elsino~(X, It) + e2cosct(X, Y), D 3 = e3 

For (3.2) the curvature tensor B is given by the formula 

~t~ ~ct 
B = e 1 ® e:3 ~ + e 2 ® e 3 ~-~ = (Grad ct) ® e 3 (3.3) 

It follows from (2.4), (3.2) and (3.3) that for the deformation (3.2)rail the components of M vanish, 
apart from M13, M23, M31 and M32- In addition, the equation (M • B )× = 0 is satisfied. Hence, of the 
three moment equations of equilibrium (2.9) two are satisfied identically, while the last takes the form 

OMla 3M2a 
~- =0 (3.4) 

OX OY 

An example of plane deformation is a curved structure, defined by the relations 

Dj = e R cos [ ~  + ea, sin 13@, 13 = const 

D 2 = -e  R sin I~@ + e,~ cos [i@, D a = ez 

(3.5) 

Here R, • and Z are polar coordinates and eR, e,~ and ez are coordinate unit vectors. The curvature 
tensor B is given by the formula 

B = I + I  3 e~  ® e z (3.6) 
R 

It can be shown that solution (3.5) is universal, like solution (3.1). 
Consider the plane problem for constitutive relations (2.14). Taking (3.3) into account, we write 

equation of state (2.16) in the form 
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M = gt(Grad~) (~) e 3 + ve 3 Q (Gradt~) 

while equilibrium equation (3.4) is reduced to Laplace's equation 

~cx  = 0 

Hence, for the law of state (2.14) the determination of the structure of a micropolar liquid in the 
plane problem reduces to finding a harmonic function. Note that the same problem is obtained when 
investigating the plane deformation of a nematic liquid crystal in the single-constant approximation. 

Equilibrium micropolar liquids with a free surface. Consider the problem of the equilibrium of a heavy 
incompressible liquid having a free surface and contained in an infinitely long cylindrical vessel. We 
will write the equation of the free surface Z in the form 

z = 10, (x, De 
where the region f~ is the cross-section of the cylinder. The free boundary fl possesses surface energy, 
which we will calculate from the formula 

~= jcdZ 
z 

Here ~ is the constant surface tension. 
We will derive the boundary conditions on Z, as in the case of a simple liquid, by a variational method 

[25]. By varying the total energy functional, assuming that there are no external loads on the surface 
Z, we obtain the following equation for the function 

v.( ' vc]= c+'-wl 
 fl+n 2 ) a Iz=((x,y) (3.7) 

In (3.7) V is the gradient operator in the (X, Y) plane, g is the acceleration due to gravity and h = 
pg/o is the capillary constant. The last term in (3.7) distinguishes the relation obtained from the equations 
of the capillary surface of a simple liquid [25]. 

The following conditions, which consist of specifying the angle of contact ~ of the free surface Z with 
the vessel walls, are satisfied on the boundary of the region I'~ 

1 
N ~/l+lVg~ -r7-~-2-~12 V(=cos~ (3.8) 

(N is the outward unit normal to the cylinder wall). 
Hence, the problem of determining the form of the capillary surface of the micropolar liquid reduces 

to equilibrium equations (2.8) and (2.9), the boundary conditions on the cylinder surface and relations 
(3.7) and (3.8). 

Equations (3.7) and (3.8) enable us to draw a qualitative conclusion regarding the influence of the 
microstructure on the volume of the liquid elevated above a certain initial level in the vessel due to the 
action of capillary effects. Namely, suppose 110 is the volume specified above in the case of a simple 
liquid, and Vis the volume of the elevated micropolar liquid in the same vessel. Then, integrating Eq. 
(3.7) taking boundary condition (3.8) into account, we obtain that 

 ,sl [ =ilh  oos ds V - Vo -- - I - : :  W d a ,  Vo 
t~ z=~(x, r) 

Since the free energy density W is negative, the last relation shows that, in the case of a micropolar 
liquid, the volume of the elevated liquid will be less. 

Equilibrium of the phases ofa micropolar liquid. Consider the problem of the equilibrium of the phases 
of micropolar liquid in a uniform temperature field. The conditions for thermodynamic equilibrium of 
the phases of an elastic material with couple stresses of general form were obtained in [26]. For a 
micropolar liquid the conditions for phase equilibrium can be obtained directly using variational equation 
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(2.10), taking into account the fact that the interface between the phases may vary independently of 
the field of the director vectors Dk. 

For a microcoherent phase transition, i.e. in the case of a field l)k that is continuous in the neigh- 
bourhood of the interface, the jumps in the virtual orientation vector ~b and the curvature tensor B are 
related by the equation 

[0]_ + + cN- [B]~ = 0 (3.9) 

In (3.9) c is the velocity of motion of the interface in the direction of the normal, and the square 
• brackets denote a jump in the corresponding value on crossing the interface. For a phase transition 
with microslip at the interface the vector N • M vanishes. 

The following additional boundary condition on the phase boundary, necessary to determine it, follows 
from stationarity condition (2.10) for microcoherent phase transitions and phase transitions with microslip 

[W + p/p]+ = 0 (3.10) 

It can be shown that Eq. (3.10) also follows from the condition for thermodynamic equilibrium [26] 
using equations of state (2.4). 

As an example we will consider the problem of the formation of a new phase--a simple incompressible liquid 
in the neighbourhood of curved structure (3.5). In view of the symmetry of solution (3.5) the region occupied by 
the new phase is a circular cylinder of radius 8. We will assume that the densities of the phases are identical and 
equal to p. We will choose the equation of state for the micropolar liquid in the form (2.14), and for a simple liquid 
the mass free energy density W_ is constant. Then, the radius of a phase inclusion is found from Eq. (3.10) and is 
given by the formula 

8 = (1 + ~)4W(2pW_)  

4. THE V I S C O M E T E R  FLOWS OF AN I N C O M P R E S S I B L E  
M I C R O P O L A R  L I Q U I D  

Viscometer flows occupy an important place in the theory of simple Newtonian liquids [17, 18]. In 
this type of flow an arbitrary Newtonian liquid behaves as a differential-type liquid. Such flows play a 
considerable role in experimental investigations of the properties of viscoelastic liquids, and enables 
one, in particular, to determine the constants that occur in the equations of state. 

Shearf low.  The  simplest example of viscometer flow is the plane steady flow of a liquid in a layer of 
depth h(--*o < X < oo, 0 ~< Y ~< h, --~ < Z < oo) due either to shear stresses (T2x = x) applied to the 
surface Y = h, or by specifying a shear velocity (~ = ~°el) (linear Couette flow [18]). 

We will consider the plane motion of a micropolar liquid in more detail. In such a liquid the director 
vectors Dk are defined by formulae (3.2), taking into account the fact that the angle of rotation tx also 
depends on the time: ~ = tx(X, Y, t). The velocity and angular velocity fields have the form 

v = vl(X, Y, t)el + v2(X, Y, t)e2, to = to(X, Y, t)e3 (4.1) 

The angular velocity to is related to the angle of rotation by the formula 

to = dotldt 

We will represent the equation of state for the Cauchy stress tensor in the form 

T = - p E +  S 

(4.2) 

Then, taking relations (4.1) and (4.2) into account, the equations of motion and the incompressibility 
condition reduce to the form 

Op + OSll OS21 do I Op ~- OSl2 ~ dv  2 
- d X  - ~ - + f f F  - = p  d~-' OY dX + =P---~" 

°3MI3 ~ 03111 0tt 2 
ax 4- + S,2 - S2, = r-dd2t a ,  aX +Tr -=0 

(4.3) 
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We will assume that in shear flow the velocity and angle of rotation have the form 

vj = o(Y), v2 = 0, a = a (Y)  (4 .4)  

It can be shown that all the deformation rate tensors and flexural deformation tensors, apart from 
e in steady shear flow of the form (4.4), vanish. Taking expansion (1.23) into account this means that 
in flow (4.1) and (4.4) the dependence of  the equations of state on the deformation prehistory reduces 
to the dependence on B and ~. In other words, in shear flow no viscoelastic liquid is distinguishable 
from a differential-type liquid of (1, 0) complexity. 

The determination of  the fields ~ and a from Eqs (4.3) requires a more detailed specification of the 
equations of state. We will use the following dependences for S and M 

S = Ih~ + ~t~ r -  (v IB+  v2Br) • B r (4.5) 

M = q l~  + I~2xT + VIB + V2 BT 

where IX1, IX2, v~, v2, rh, 112 are constants. 
Equations (4.5) represent a linear dependence of  the stress and couple-stress tensors on the velocity 

tensors. In the equilibrium state the law of state (4.5) reduces to relations of the form (2.14). 
Assuming that there are surface couple stresses (N. M = 0 when Y = h) the solution of system (4.3) 

gives 

T21 = x, T22 = 0, Mz3 = x~(h-Y) 

v(Y) = ~Oy, Oo =z__- 

y2 
a(D=a° + ~ g (hr--T); ~ = ~ - 1  gl 

(a  ° is the angle of orientation when Y 0). 
Formulae (4.6) describe the linear distribution of velocities and couple stresses over the depth. 

(4.6) 

Flow in a channel. Consider the plane flow of a micropolar liquid in a layer between two parallel 
plates (--~ < X < ~,  -h  < Y < h, -o0 < Z < **), due to a pressure drop in the direction of the X axis. 

We will take the velocity fields, the angle of rotation of the trihedron Dk and the pressure p in the 
form 

ul = v(Y), v2 = 0, a = a(Y), p = -GX (G = const) (4.7) 

As in shear flow, in the flow represented by (4.7) the micropolar liquid is indistinguishable from a 
differential-type liquid of (1, 0) complexity. 

For the law of state (4.5) the solution of Eqs (4.3) is given by the formulae 

7"21 = -GY, 7"22 = - - G X  

M23= ~ y2+ 6.~G_ h2 Vl - 5  (o~-  a_) 

(4.8) G 
0(19 = ~ (h2-y 2) 

a(lO = -  Y(te-h2)+~-~(a+-a_)Y+~(a÷+a_) 

In (4.8) ~_ are the angles of orientation of the trihedron on the plates (a(+_h) = ~_). 

Couetteflow. Consider the flow of a viscoelastic micropolar liquid between rotating coaxial cylinders. 
Suppose the flow is given by the formulae 

v(R) 
v = v(R)%, ~ = ---R-- e~ p = p(R), a = a(R) (4.9) 

D ! = eRCOS o~ + ea~ sin a,  D2 = --eR sin a + e~, cos a, D 3 = e z 
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It can be shown that in this case the following equations are satisfied 
t / )  

B=o:ee®ez+lea®ez, .=(v'- R)eR®e., ~=(R-~)eR®ez 
Ak=Bk=O (k=2 ,3  .... ) 

The last two equations denote that, in the class of flows (4.9), an arbitrary viscoelastic micropolar 
liquid is indistinguishable from a differential-type liquid of complexity (1.1). 

The equations of motion reduce to three equations in v, t~ and p 

pu 2 SRa + S¢,R 
-p '+S'RR + S R R - S * a  + =0, S~a+ = 0  (4.10) 

R R R 

M~z + MRz + SRa - SaR = 0 
R 

In view of the complexity of the final expressions we will only present the solutions of (4.10) for the 
velocity field and the angle of rotation (we use constitutive relations (4.5)) 

v (R) = caR + 
c t R 2 

2rh R In ~ - - ~ - ,  
R 

a ( R )  = at 0 + Cll(R) + c z In --g--- 
t %  

c 0=~21-  cl In R2 
2r/l t~ + R 2 

2r/i (f~0 - O l  ) 
c, = ln[P~(6+ R[) I - ln[R?(6+ Ro2)] 

(4.11) 

c2 =( In  Rl / -I t, Ro ) [a~ -a°-ql(R~)] 

I(R)= J ln(t~+R2) - dR, S =  rl--L 
Ro #l 

In (4.11) f20 and t21 are the angular velocities of rotation of the cylinders between which the liquid 
moves, R0 and R 1 are their radii (R1 > R0), and t~t0 and a l  are the angles of orientation of the trihedron 
of the director vectors on the cylinder surfaces. 

Poiseuilleflow. As  an example of three-dimensional flow, consider the steady axisymmetrical flow of 
a viscoelastic micropolar liquid in a circular tube, due to a pressure drop. We will introduce the cylindrical 
coordinates R, ~,  Z so that the Z axis coincides with the axis of symmetry of the tube. We will seek a 
solution in the form 

v = v(R)ez, o~ = O, p = - G Z  + q(R), tx = ct(R) (4.12) 

D1 = eRCOS ~ + ez sin t~, D2 = ea, D3 = -eRsin ~ + ez cos 

In the flow represented by (4.12) all the deformation rate tensors and the flexural deformation tensor, 
apart from ~, vanish. Taking (1.23) into account this means that, in a flow of the form (4.12), the 
dependences of the equations of state on the deformation prehistory consist of the dependences on B 
and e. 

Using isotropicity of the functions S and M, it can be shown that in flow of the type (4.12) the following 
components of the tensors S and M vanish: SRa, SaR, Sza,  Saz,  Me, R, Maa,  Mzz, Mnz,  Mzn.  

The equations of motion reduce to three equations in the unknowns ~, tx and q 

S~R -I SRR - Saa q" = 0, S~z + SRz + G = 0 
R R 

MRa + MaR 
M~a + I- SzR - SRz = 0 

R 
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Integration of these equations for constitutive relations (4.5) and the boundary conditions 
~(R0) = 0 and tx(R0) = o~0 when R =R0 gives 

u(R)=-~u (~-R2), a(R)= a0 + 1368v~ (R~- R3) 

One can similarly investigate other flows, for example, annular flow between coaxial cylinders. 
This research was supported by the Russian Foundation for Basic Research (99-01-01019). 
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